목록전체 글 (130)
Qaether 연구일지
“순환열 → 색 → 맛(정팔면체) → 쿼크 → 바리온/메손 → 트라이앵글릿 → 정사면체 → 렙톤 → 전하·스핀”까지, 기본 대칭을 순환열의 \(D_4\)로 하여 규약을 일관된 수학 기호와 정의로 정리한다. 0. 전제·기호격자: FCC, 격자 간격 \(a=l_p\). (v1.4에서 부터 반영 예정)노드(사이트) \(i\): 단위 쿼터니안 \(q_i\in SU(2)\) (로터/스핀자 자유도).링크 위상: \(\Delta\phi_{ij}=\phi_j-\phi_i\).짧은 루프 잠금(삼각·사각)$$\Delta\phi_{ij}\in\tfrac{\pi}{6}\mathbb Z,\qquad \sum_{(ij)\in \ell}\Delta\phi_{ij}\equiv \Phi_\ell=2\pi n_\ell\ (n_\ell\..
1) 루프(플라켓) 포텐셜: 정의와 값루프 결합만 남긴 정적 퍼텐셜:$$V_{\text{loop}}(\square) =\underbrace{\Lambda_\ell\sum_{e\in\square}(1-\cos\theta_e)}_{\text{U(1) 위상 잠금}} +\underbrace{\frac{1}{2g_s^2}\|G_\square-\mathbb I_3\|_F^2}_{\text{SU(3) Wilson(플라켓)}}, \quad \theta_e=\frac{\pi}{6}\,\zeta_e.$$세 대표 순환열(계열)에 대해 플라켓 하나당 값:U(1) 항$$\begin{aligned} (0,2,4,6)&:\;V_{U(1)}=4\,\Lambda_\ell,\\ (0,1,5,6)&:\;V_{U(1)}=4\,\Lambda..
안에 태그를 넣어 이미지를 배치합니다 -->0. 핵심 요약링크 위상차 양자화: 모든 링크 위상은 \(\Delta\phi_{ij}=m_{ij}\,\pi/6\) (정수 \(m_{ij}\))로 양자화되며, 격자의 위상군은 \(U(1)/\mathbb Z_{12}\simeq C_{12}\). 짧은 루프(△, □)가 이 조건을 동역학적으로 강제한다.플라켓 플럭스 부문 고정: 한 플라켓의 네 링크 정수 \(\{n_i\}\)가 \(\sum n_i=12\)인 부문을 고정한다(정수합, not mod). 이 부문에서만 미세배치(순환열)가 물리적 라벨로 남는다.순환열 3종 = 색 3종: 네 값이 서로 다를 때, 플라켓을 따라 읽은 24개의 원순열을 정사각 판의 디헤드럴 대칭 \(D_4\)(회전·반사)로 나누면 정확히 3개의..
Qaether: 각 공들을 최소단위 공간 Qaether라고 부르자. 그리고 색깔은 현재 Qaether의 진동상태라고 놓자. Qaether는 단위 쿼터니안처럼 행동한다. Void: 각 공들 사이의 결합이 없는 지점을 말한다. 실제로 어떠한 물리적 작용도 없다FCC 구조: 공들은 FCC 구조로 촘촘하게 잘 packing되어 있다. FCC 구조 이외 다른 구조로도 존재할 수 있지만 가장 대칭적인 구조이기 때문에 선택했다.점결합: 공과 공사이는 점결합이 일어나며 공전체 면적대비 이 결합 면적비가 우주상수랑 연결된다고 본다. 그리고 공과 공사이는 coupling이 일어난다. 정상파: 각 Qaether는 정상파를 이루고 있다.격자구조: FCC 구조와 점결합에 의해 공 하나의 중심으로부터 다음 공까지의 중심을 연결하..
0. 목표(Clay YM Mass Gap의 수학적 형태)문제정의: \(G=\mathrm{SU}(N)\) (주로 N=3) 4차원 순수 Yang–Mills에 대해, 격자 자외선 절단 \(a>0\)와 부피 절단 \(\Lambda(질량 갭) 어떤 비상수 게이지-불변 로컬 연산자 O 에 대해 $$\exists\,m>0,\,C(OS 복원 및 동치) OS 복원으로 얻는 물리 힐베르트공간 \(\mathcal H\)과 자가수반 해밀토니안 \(H\ge0\)이 존재하며, 진공 \(\Omega\)가 평행이동 불변·유일이고 에너지-운동량 스펙트럼이 원뿔 내부에 놓인다. 이때 (1)의 \(m>0\)은 \(\mathcal H\)에서의 스펙트럼 갭 $$\operatorname{spec}(H)\cap(0,m)=\varnothing$$..
1. 기본 전제와 변수정점 자유도: 단위 쿼터니안 \(q_i\in SU(2)\).링크: \(\Delta q_{ij}=q_j q_i^{-1}\).Hopf 섬유의 U(1) 위상각 \(\phi_i\)를 뽑아 \(w_i=e^{i\phi_i/2}\), 링크 \(\Delta w_{ij}=e^{i(\phi_j-\phi_i)/2}\)SU(3) 링크는 정적 색 배경 + 동적 글루온 형태:$$\Xi_{ij}=\exp\!\big[i\,C_{ij}\!\cdot\! \lambda\big]\,\exp\!\big[-ig_s A_{ij}\big]$$여기서 \(C_{ij}\)는 플라켓 미세배치(색 궤도; 아래 2.3)로부터 오는 Cartan 공간 벡터, \(A_{ij}\)는 글루온.자율형(재매개 불변) 작용의 시간자(라프스) \(E(..