목록qaether (114)
Qaether 연구일지
지금 상태에서 가장 큰 정합성 취약점SU(2) 홀로노미의 ‘스펙트럼’ vs \(\mathbb Z_{12}^4\) 벡터 \(w\)가 충돌문서에서는 \(U_p\in SU(2)\)를 도입해놓고, 곧바로 “플라켓 상태는 홀로노미 행렬의 고유상 집합”이라며 \(w=[k_1,k_2,k_3,k_4]\)로 갑니다.문제: \(SU(2)\) 행렬의 고유값은 본질적으로 \(e^{\pm i\theta}\) 두 개(한 개 각도 \(\theta)\)로 결정됩니다.그런데 \(w\)는 4개의 독립 위상(게다가 이후 \(U_\square(w)=\mathrm{diag}(e^{i2\pi k_1/12},\dots)\in U(4)\))을 쓰고 있어요.→ 지금 서술대로면 “\(U_p\in SU(2)\)”와 “\(U_\square(w)\in U..
0. 목표(요약)Qaether 격자(Rest Frame)를 기준계로 두고, 시간은 Planck 틱(Tick)으로 양자화한다. 광자는 링크를 따라 전파하되, 특정 사이트에서 “루프-허용 결함”이 존재하면 확률적으로 루프에 체류(dwell)한 뒤 탈출한다.그 결과 (A: 주파수 독립 탈출확률 $p$) 가정 하에서 평균 도착시간이 닫힌 형식(closed-form)으로 계산되고, 거시적으로는 굴절률 $n_{\rm eff}$를 가진 매질처럼 동작하며, 도플러 효과는 매질 도플러 법칙을 따른다. 1. 공리 (Axioms)공리 A0 (Planck 단위와 Qaether 시계)기본 길이·시간 단위 $l_p, t_p$가 존재하며 다음을 정의한다.$$ \omega_p := \frac{2\pi}{t_p}, \qquad c :..
(Geometric Definition of Color Charge and Confinement in Qaether Lattice Theory)1. 서론: 이산 기하학적 게이지 이론의 기초본 문서는 연속적인 시공간 및 대칭성을 가정하는 표준적인 양자장론과 달리, 이산적인 격자 구조와 기하학적 대칭을 통해 색전하(Color Charge)와 그 가둠(Confinement) 현상을 설명하려는 Qaether 격자 이론의 기본 개념을 제시한다. Qaether 이론은 격자 위에서 물질(페르미온)의 스핀 대칭성과 힘(게이지 보손)의 색 대칭성을 통합적으로 정의하며, 표준 모형의 특정 패턴을 순수한 기하학적 제약으로부터 유도하고자 한다.1.1 Qaether 네트워크의 정의Qaether 이론은 다음 요소들로 구성된 이산..
0) 기초정의(K0.1) 2-complex$$X=(V,E,P), \qquad P=P_\triangle \sqcup P_\square$$여기서 $P_\triangle$는 길이 3 최소루프(삼각), $P_\square$는 길이 4 최소루프(사각)이다.(K0.2) 셀 프레임(쿼터니안)$$\mathbf q_i = \exp\left(i\frac{\phi_i}{2}\mathbf n_i\cdot\boldsymbol\sigma\right) \in SU(2), \quad \phi_i \sim \phi_i + 4\pi$$즉 $SU(2)$ 스피너 프레임(=단위 쿼터니안) 성질을 채택한다.(K0.3) 커넥션과 관측 링크$$\mathbf h_{ij} \in SU(2), \quad \mathbf h_{ji} = \mathbf h..
0. 접촉 네트워크와 2-셀(플라켓)Qaether는 정점 집합 $V$ (셀)와 유향 인접(접촉) 간선 집합 $E$로 이루어진 유향 그래프 $G=(V, E)$ 위에 정의된다. 그래프 \(G\)의 단순(simple) 최소 루프(더 작은 루프의 합으로 분해 불가)중 길이 3(삼각) 및 길이 4(사각) 루프들의 선택된 집합을 플라켓 집합 \(P\)라 하고, 각 \(p\in P\)를 2-셀(plaquette)로 붙여 2-차원 복합체(2-complex) \(X=(V,E,P)\)를 이룬다. 각 플라켓 \(p\in P\)에는 방향(orientation) 이 주어지며, 이에 따라 경계 \(\partial p\)는 유향 간선들의 순환열(cyclic word) \((i_1 \to i_2),(i_2 \to i_3),\do..
Qaether Theory: Background Independence and the Origin of Spacetime & Matter 0. 서론: 무대 없는 연극현대 물리학은 보통 시공간이라는 무대를 먼저 깔고, 그 위에 입자와 장을 올린다. 이 방식은 압도적으로 성공적이었지만, 양자중력이 던지는 질문은 여전히 남는다. “우주라는 무대 자체는 무엇으로 만들어졌는가?” Qaether 이론은 이 질문을 최대한 끝까지 밀어붙이는 시도이다. 출발점은 단순하다. 좌표도, 메트릭도, 보편적 시간도 없이, 오직 하나의 정보만 허용한다. “최소공간 Qaether가 서로 맞닿아 있다(contact).” Qaether는 처음부터 완성된 수학 체계를 내놓기보다는, 컴퓨터 시뮬레이션 가능한 물리적 그림(physical p..
