목록전체 글 (109)
The Qaether Log

Qaether: 각 공들을 최소단위 공간 Qaether라고 부르자. 그리고 색깔은 현재 Qaether의 진동상태라고 놓자. Qaether는 단위 쿼터니안처럼 행동한다. Void: 각 공들 사이의 결합이 없는 지점을 말한다. 실제로 어떠한 물리적 작용도 없다FCC 구조: 공들은 FCC 구조로 촘촘하게 잘 packing되어 있다. FCC 구조 이외 다른 구조로도 존재할 수 있지만 가장 대칭적인 구조이기 때문에 선택했다.점결합: 공과 공사이는 점결합이 일어나며 공전체 면적대비 이 결합 면적비가 우주상수랑 연결된다고 본다. 그리고 공과 공사이는 coupling이 일어난다. 정상파: 각 Qaether는 정상파를 이루고 있다.격자구조: FCC 구조와 점결합에 의해 공 하나의 중심으로부터 다음 공까지의 중심을 연결하..
0. 목표(Clay YM Mass Gap의 수학적 형태)문제정의: \(G=\mathrm{SU}(N)\) (주로 N=3) 4차원 순수 Yang–Mills에 대해, 격자 자외선 절단 \(a>0\)와 부피 절단 \(\Lambda(질량 갭) 어떤 비상수 게이지-불변 로컬 연산자 O 에 대해 $$\exists\,m>0,\,C(OS 복원 및 동치) OS 복원으로 얻는 물리 힐베르트공간 \(\mathcal H\)과 자가수반 해밀토니안 \(H\ge0\)이 존재하며, 진공 \(\Omega\)가 평행이동 불변·유일이고 에너지-운동량 스펙트럼이 원뿔 내부에 놓인다. 이때 (1)의 \(m>0\)은 \(\mathcal H\)에서의 스펙트럼 갭 $$\operatorname{spec}(H)\cap(0,m)=\varnothing$$..
1. 기본 전제와 변수정점 자유도: 단위 쿼터니안 \(q_i\in SU(2)\).링크: \(\Delta q_{ij}=q_j q_i^{-1}\).Hopf 섬유의 U(1) 위상각 \(\phi_i\)를 뽑아 \(w_i=e^{i\phi_i/2}\), 링크 \(\Delta w_{ij}=e^{i(\phi_j-\phi_i)/2}\)SU(3) 링크는 정적 색 배경 + 동적 글루온 형태:$$\Xi_{ij}=\exp\!\big[i\,C_{ij}\!\cdot\! \lambda\big]\,\exp\!\big[-ig_s A_{ij}\big]$$여기서 \(C_{ij}\)는 플라켓 미세배치(색 궤도; 아래 2.3)로부터 오는 Cartan 공간 벡터, \(A_{ij}\)는 글루온.자율형(재매개 불변) 작용의 시간자(라프스) \(E(..

양–밀스 이론은 비가환 게이지 장이 질량 간극을 가질 것임을 물리적으로 예측하지만, 이를 엄밀히 수학적으로 증명하는 것은 아직 난제로 남아 있다. Qaether 이론은 격자 기반의 위상 양자화와 진공 압력 구조를 통해 비가환 게이지 장에 유효 질량 스케일을 부여하므로, 수학적 증명은 아니더라도 물리학적으로 질량 간극의 존재를 설명할 수 있다고 본다. 이러한 맥락에서 양–밀스 난제를 간단히 소개하고 이해해보려고 한다. 양–밀스(Yang–Mills) 질량 간극(mass gap) 난제4차원(3+1)에서 컴팩트 단순 리군(예: SU(2), SU(3))에 대한 순수 양–밀스 이론이수학적으로 잘 정의된 양자장(QFT)으로 존재하고,바닥상태(진공) 위 스펙트럼에 0이 아닌 유한한 간극 \(m>0\)이 있음을 증명하라..
포논(phonon) 이론은 고체 내 원자들의 집단적인 진동 모드를 양자역학적으로 기술하는 이론입니다.즉, 고체를 구성하는 원자들이 규칙적인 격자(lattice) 위에서 열적·양자적 요동을 할 때, 그 집단 진동을 하나의 입자처럼 다루는 개념이죠. 1. 기본 개념고체 내 원자들은 평형 위치를 중심으로 진동함.이 진동은 파동 형태로 격자를 따라 전파됨.파동을 양자화하면, 진동 에너지의 최소 단위가 포논이라는 준입자(quasi-particle)가 됨.포논은 보손(Bose-Einstein 통계 따름)이며, 광자와 유사하게 파동과 입자 이중성을 가짐. 2. 고전적 출발점격자 진동의 고전 모델원자를 질량 m인 입자, 결합을 스프링 상수 K인 용수철로 모델링.1차원 단원자 체인:$$m \frac{d^2 u_n}{dt..
아래 목록은 공개된 실험·관측 데이터의 재분석만으로 Qaether 이론의 핵심 정의·예측을 시험하는 방법을 쉬운 것 → 어려운 것 순서로 정리한 것이다. 각 항목은 핵심 예측 · 데이터 후보 · 분석 레시피 · 지지/기각 신호로 요약했다.FCC 격자 위상차 \( \pi/6 \) 양자화 검증핵심 예측: 모든 링크 위상차가 \( \Delta\phi_{ij}=m\,\frac{\pi}{6}\;(m\in\mathbb Z) \), 위상군 \(C_{12}\).데이터 후보: (i) FCC 결정의 중성자/엑스선 산란(phonon/magnon 위상), (ii) FCC 재료 ARPES(Berry/Bloch 위상).분석 레시피: 삼각·사각 루프 위상합 산출 → \(30^\circ\) 모듈러 언랩 → \(\pi/6\) 격자에 ..