목록분류 전체보기 (146)
Qaether 연구일지
ResearchGate에서 추천해 준 Preprint 수준의 연구과제 내용을 요약해 보면 이 글은 양자장 이론(Quantum Field Theory) 안에서 대칭(symmetry) 이 어떻게 더 복잡해질 수 있는지를 다룬다. 기존에는 대칭이 “뒤집거나 회전해도 똑같은 성질” 같은 것이었지만, 최근 물리학에서는 완전히 되돌릴 수 없는(non-invertible) 대칭 이라는 새로운 형태가 등장했다. 되돌릴수 없는 대칭이라는 말이 애매하긴 한데 나는 이걸 "대칭을 통해 비가역현상을 만들어 낸다"는 뜻으로 이해했고 이걸 가지고 엔트로피 문제에 대입해 보았다. 엔트로피 법칙은 미시적(양자 수준) 법칙은 대칭적이고 가역적이지만 거시적(우리 눈에 보이는 세계) 법칙은 비가역적이다. 즉, “작은 세계는 되돌릴 수 있..
FCC 격자와 이를 바탕으로 한 최소 결합 루프를 수학적으로 정의할 필요가 있다고 생각되어 다음과 같이 구조화를 진행한다. FCC 격자의 위상장(cochain) 구조격자 정의FCC 격자의 그래프를 다음과 같이 둔다. (여기서 \(V\)는 site(정점) 집합, \(E\)는 link(변) 집합이다.)\[G = (V, E)\]격자의 최소 닫힌 루프는 정삼각형과 정사각형 경계로 이루어진다.\[\mathcal{P} = \mathcal{P}_3 \cup \mathcal{P}_4\] 위상(cochain) 변수의 정의 각 site \(i \in V\)에는 위상을 둔다:\[\phi_i \in \mathbb{R}/2\pi\mathbb{Z}, \qquad \text{(0-cochain)}\]각 link \(e = (i ..
플라켓의 위상차 합이 고정되고 각각의 위상차가 이산화되어 있을 경우 3가지 순환열 동치류가 존재한다는 증명이다.이 증명은 SU(3)에서 쿼크의 색이 3가지인것을 표현하기에 적합해서 중요한 구조로 보고 있다.더해서 이 쿼크류의 3가지 색을 각각 다른 순환열과 결합하여 정팔면체 결합까지 만들어 바리온 구조를 설명하려고 하고 있다.다만 현재 이 논문은 거기까지 간 내용은 아니고 수학적으로 존재성을 입증할 뿐이다. 본 논문을 genodo에서 DOI 받아서 researchgate에 올렸다. 수학적으로 증명만 하면 되서 엄밀하게 증명하였다. https://www.researchgate.net/publication/396437920_Counting_Distinct_Plaquette_Phase_Configuration..
A7. Electric Charge — Geometric Spin Arithmetic 0. 설정·기호격자: FCC 1-스켈레톤 \(E\)와 최소 루프(삼각·사각) 2-셀 집합 \(F\)로 이루어진 2-복합체.내부 자유도: 각 정점 \(i\)에 SU(2) 스핀\[\mathbf q_i=\exp \Big[i\frac{\phi_i}{2}\big(\mathbf n_i \cdot \boldsymbol\sigma\big)\Big],\quad\mathbf n_i\in S^2,\ \quad \phi_i\in(-\pi,\pi] \]링크 변수: $$U_{ij}=\mathbf q_j\mathbf q_i^{-1}\in SU(2)$$위상 양자화(섹터 고정): (색전하에서와 동일한 \(\mathbb Z_{12}\) 잔여 구조) ..
A6. 색전하의 정의 (\(D_4\) 순환열 동치류) 0. 배경·기호(엄밀 정식화)격자와 체인 복합체FCC 최근접결합 그래프 \(G=(V,E)\) 위에 삼각/사각 최소루프를 2-셀로 붙인 2-스켈레톤 \(X\)를 잡는다. $$C_2=\mathbb Z^F, \quad C_1=\mathbb Z^E, \quad \partial_2:C_2\to C_1$$ 각 링크 \(e\in E\)에는 위상 \(\phi_e\in\mathbb R/2\pi\mathbb Z\)를 두고, 모든 최소루프 \(f\)에 대해 \(\Phi(\partial_2 f)=0\)가 성립한다.이때 \(\Phi:C_1\to\mathbb R/2\pi\mathbb Z\)는 1-코사이클로 잘 정의된다. 링크 위상 양자화특정 링크 \(e\)의 동치류 \([e]..
1. 위상적 기원 — 링크의 위상수FCC 격자에서는 각 링크(1-체인)가 여러 개의 닫힌 2-셀(삼각, 사각 루프)에 둘러싸여 있다.이를 사슬군 체계로 쓰면 \( C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{} 0 \).이때 경계 연산자의 여상(cokernel), 즉 \( \mathrm{coker}(\partial_2) \)에 torsion이 생긴다.그게 바로 \( \mathbb{Z}_{12} \) — 12번 더하면 0이 되는 위상적 순환.그래서 한 링크의 위상차 \( \phi_e \)는\[12\phi_e \equiv 0 \pmod{2\pi}\]로 제한되고, 자연스럽게 \( \pi/6 \) 단위로 양자화된다.즉, 위상차의 “단위”는 물리 법칙이 아니라 격자 자체의 위..