목록loop (2)
The Qaether Log
FCC 격자에서 링크 위상차의 \(\pi/6\) 양자화 — 완전 증명정리(주장)FCC 최근접(contact) 그래프 \(G=(V,E)\) 위의 위상장 \(\{\phi_i\}_{i\in V}\)와 링크 위상차 \(\Delta\phi_{ij}=\phi_j-\phi_i\in\mathbb R/2\pi\mathbb Z\)에 대해, 아래의 에너지 함수를 갖는 평형(정지점)에서$$ \boxed{\ \Delta\phi_{ij}=m_{ij}\,\frac{\pi}{6}\quad(m_{ij}\in\mathbb Z)\ } $$가 모든 \((i,j)\in E\)에 성립한다. 따라서 잔여 위상 자유도는 \(U(1)\big/\mathbb Z_{12}\simeq C_{12}\)로 축소된다. 0. 설정과 표기정점 \(i\in V\),..

결합패턴 정의기본루프트라이앵글릿 (Δ, \(\ell_3\))구성: 3개의 링크가 닫힌 형태.위상 폐합식:$$\Phi_{\ell_3}= \sum_{(ij)\in\ell_3} \Delta\phi_{ij} \;=\; 2\pi\,n_{Δ}, \quad n_{Δ}\in\{\,-1,\,0,\,+1\,\}$$\(n_{Δ}\)를 트라이앵글릿 지수라 부른다.플라켓 (□, \(\ell_4\))구성: 4개의 링크가 닫힌 형태.위상 폐합식(일반형):$$\Phi_{\ell_4}= \sum_{(ij)\in\ell_4} \Delta\phi_{ij} \;=\; 2\pi\,n_{□}, \quad n_{□}\in\{\,-1,\,0,\,+1\,\}$$\(n_{□}\)를 플라켓 지수라 부른다스피너릿 (◇, \(\ell_s\))구성: ℓ₄ ..